Flavor of roasted peanuts

Koushik Adhikari

- Peanut in the U.S
- Reactions impacting flavor
- Flavor
 - Descriptive profile
 - Instrumental profile
- Correlations between sensory & GC profile
- Flavor fade during storage
- High-oleic trait
- Sensory Evaluation & Consumer lab, UGA Griffin Campus

Overview

- The United States is the world's third largest producer, having a share of 8% of overall production.
- Georgia has the largest proportion with about 49% of the total national production.

Peanuts in the US

- Runner peanuts are preliminarily grown in Georgia, Alabama and Florida.
- Runner group has uniform kernel size and are majorly used for processing, especially peanut butter.
- They have been the dominant type since 1979.
- Now account for 80 percent of the peanuts grown in the United States.
- Popularity of Runner due to its good flavor and roasting characteristics peanut butter.
- Florunner higher yields, more oleic acid...hence stable

Runner

- Maillard reaction is the main reaction that forms various volatiles during processing.
 - Mostly positive impact
 - Roasted peanut flavor
- Lipid oxidation or autoxidation is the main reaction that happens during storage.
 - Mostly negative impact
 - Oxidized flavor

Reactions

- Positive effect on flavor during roasting
- Temperatures >150°C, chemical reactions are initiated to produce roasted flavor and color change.
- Initial phase free amino groups in proteins (basic amino acids) react with reducing sugars (free carbonyl groups)
 - Rearrangement reactions mainly Amadori
- Intermediate phase Strecker degradation pyrazines/furans/furaldehydes are formed
- Melanoidins the brown colored pigments are finally formed

Maillard reaction

- Among Maillard volatiles pyrazines are important because they are thought to contribute to roasted flavor
- Has been studied extensively in peanuts
- Basic structure

• Alkylated pyrazines are the major compounds in roasted peanuts (Bett and Boylston 1992)

Pyrazines

- Major volatiles that are responsible for roasted peanut flavor.
- Mason and Johnson (1966) were first to identify 5 pyrazines and suggested their possible roles in roasted peanut flavor.
- Buckholz and others (1981) found that 2-ethyl-6-methyl pyrazine and 2-ethyl-3-methyl pyrazine were strongly correlated with consumer acceptability.
- Baker and others (2003) revealed that 2,5dimethylpyrazine was the best predictor of this flavor.

Pyrazines

- Negative effect on flavor; happens during storage
- In peanut because of its high lipid content which varies from 44% -56% in the four major market types
- Hydroperoxides is a primary non-volatile oxidation products during the oxidation process
- Decompose to various volatile aromatic secondary products
 - Including alcohols, aldehydes, ketones, furans, organic acids, and hydrocarbons
- Most of these compounds are always associated with the off-flavor

Autoxidation

Flavor perception	Responsible compounds
Cardboard	trans, trans-2,6-Nonadienal
Oily	Aldehydes
Painty	Pent-2-enal, aldehydes
Fichy	Trans, cis, trans-2,4,7-Decatrienol,
T ISHY	oct-1-en-3-one
Grassy	Trans-2-Hexenal, nona-2,6-dienal
Deep-fried	Trans, trans-2, 3-Decandienal

Autoxidation

Lexicon for roasted peanuts		
	AROMATICS (Jonnson and others, 1988)	
Roasted Peanutty	The aromatic associated with medium-roast and having fragrant character such as	
Trousted Teanutry	methyl pyrazine.	
Raw bean/peanutty	The aromatic associated with light-roast peanuts and having legume-like	
	character (specify beans or pea if possible).	
Dark reacted peoput	The aromatic associated with dark-roasted peanuts having very browned or	
Dark roasted peanut	toasted character.	
S	The aromatics associated with sweet material such as caramel, vanilla, molasses,	
Sweet aromatic	fruits (specify fruit).	
Woody/Hulls/Skins	The aromatics associated with base peanut character (absence of fragrant top	
	notes) and related to dry wood, peanut hulls, and skins.	
	The aromatic associated with some-what oxidized fats and oils and reminiscent of	
Cardboard	cardboard.	
Painty	The aromatic associated with linseed oil, oil based paint.	
Burnt	The aromatic associated with very dark roast, burnt starches, and carbohydrates,	
Buint	(burnt roast or espresso coffee).	
Green	The aromatic associated with uncooked vegetables/grasstwigs, cis-3-hexanal	
Earthy	The aromatic associated with wet dirt and mulch	
Grainy	The aromatic associated with raw grain (bran, starch, corn, sorghum).	
Fishy	The aromatic associated with plastic and burnt plastics.	
Chemical/plastic	The aromatic associated with plastic and burnt plastics.	
Skunky/mercantan	The aromatic associated with sulfur compounds, such as mercaptan, which	
Skunky/mercaptan	exhibit skunk-like character.	

Descriptive profile

Toma/Flavor terms used by wang and others, 2015, to study short term shen-me of peanuts		
	Roasted peanutty	The aromatic associated with medium-roast peanuts
	Oxidized	The flavor associated with rancid fats and oils
	Cardboard	The aromatic associated with somewhat oxidized fats and oils and reminiscent of wet cardboard
	Fishy	The aromatic associated with trimethylamine, cod liver oil or old fish
	Painty	The aromatic associated with linseed oil, oil based paint

Aroma/Flavor terms used by Wang and others, 2015, to study short term shelf-life of peanuts

Descriptive aroma profile

- Our lab detected 30 volatile compounds from roasted peanuts found by other researchers as well
 - Aldehydes/ketones: hexanal; heptanal; octanal; nonanal; 2,4-decadienal; 3-nonen-2-one
 - **Furan derivatives:** furfural; 2-pentyl furan; 2,3-dihydro benzofuran
 - **Pyrroles:** 1-methyl-1H pyrrole; 3-methyl-1H pyrrole
 - **Pyrazines:** methyl pyrazine; 2,5-dimethyl pyrazine; 2-ethyl-5methyl pyrazine; 3-ethyl-2,5-dimethyl pyrazine; 2-ethyl-3,5dimethyl pyrazine; 2,3-dimethyl-5-ethyl pyrazine; 2,5-diethyl pyrazine; 2-methyl-6-(*trans*-1-propenyl) pyrazine; 2,3-diethyl-5methyl pyrazine; 3,5-diethyl-2-methyl pyrazine.

Instrumental aroma profile

• Off-flavors

- Associated with **secondary oxidation products:** alcohols, aldehydes, ketones, furans, organic acids, and hydrocarbons
- Flavor perceptions for some lipid oxidation products (Min and Bradley 1992)

Flavor perception	Responsible compounds
Cardboard	trans, trans-2,6-Nonadienal
Fishy	Trans, cis, trans-2,4,7-Decatrienol; Oct-1-en-3-one
Painty	Pent-2-enal; Aldehydes

• As storage time further increases Fishy, Painty

Correlations

- Hexanal: Beany flavor in raw peanuts (Pattee and others 1969b).
- Methylbutanal & Methylpropanal: Dark roast flavor (Crippen and others 1992).
- N-methylpyrrole: Woody/hulls/skins flavor (Crippen and others 1992).

Correlations

PLS Biplot from our study

- Major results from our tests
 - Among all the pyrazines, **2,5-dimethyl pyrazine**, seemed most responsible roasted peanutty flavor.
 - Lipid oxidization products (mainly octanal and nonanal), (+)ve with overall oxidized flavor; (-)ve with roasted peanutty flavor.
 - Two pyrroles: (+)ve with bitter taste; (-)ve with roasted peanutty flavor.

Correlations

• Definition:

Loss of positive attributes associated with fresh-roasted peanuts accompanied by the development of off-flavors during storage (Hui and others 2010)

- Development of off-flavors: Lipid oxidation products, masking the roasted flavors
- Loss of the roasted peanut flavor: Loss of pyrazines and associated flavors during storage.
- Sweet attribute significantly decreased from day 0 to day 7, no further decrease was found from day 7 to day 21 (Williams and others 2006).

Flavor fade

- Reduced roasted flavor during storage
 - Warner and others (1996) found that levels of pyrazines relatively stable while aldehydes increased.
 - Masking of pyrazines by large quantities of low-molecular weight aldehydes
 - Bett and Boylson (1992) reported the content of alkypyrazines decreased significantly especially in the early storage time.
 - Degradation of pyrazines was supported by others work (Reed and others 2002; Williams and others 2006)
 - Flavor entrapment or degradation by lipid radicals and hydroperoxides (Williams and others 2006)

Flavor fade

• Mechanism:

Oleic acid increases; less double bonds in lipid profile; oxidize slower

- Compared to normal oleic roasted peanuts, high-oleic peanuts:
 - Have **longer shelf life** (Braddock and others 1995; Mozingo and others 2004; Nepote and others 2006; Reed and others 2002; Talcott and others 2005)
 - Persistence of roasted flavor better during storage (Braddock and others 1995; Nepote and others 2006)
 - Less susceptible to salt during processing (Mozingo and others 2004) and change in water activity (Reed and others 2002)

High-oleic trait

Some results from our study funded by GPC

Normal-oleic 06G vs High-oleic 13M – Roasted Peanutty

No change or difference was observed over 8 weeks

Some results from our study funded by GPC

Normal-oleic 06G V.S High-oleic 13M - Consumer tests

High-oleic 13M was **significantly preferred** over normaloleic 06G for both overall liking and roasted peanut flavor liking at all three time points over 8 weeks

Some results from our study funded by GPC

Normal-oleic 06G vs High-oleic 13M – GC results

13M had more pyrazines throughout as compared to 06G

SENSORY EVALUATION & CONSUMER LAB

Preparation area

- Fully equipped kitchens for sample preparation
- Ovens, microwave ovens, refrigerators, freezers and other equipment necessary for sample preparation
- Pilot-plant to help with needs of the client

Evaluation booths

- 18 booths;10 booths are computerized
- Compusense *five* for data collection
- Could be used for both analytical and affective tests

Facilities

Preparation area

Evaluation booths

- Both analytical and affective
- Analytical/Trained
 - Discrimination testing
 - Descriptive testing
- Affective/Consumer
 - Qualitative
 - One-on-one interviews and focus groups
 - Quantitative
 - Preference tests and acceptability tests

Test capabilities

In-shell

Kernels

Consumer acceptability of peanuts – GPC funded

- Acceptability of Vidalia onions
- Descriptive lexicon for peaches
- Acceptability of steaks by millennials and nonmillennials
- Storage study on raw blanched peanuts
- Acceptability of dogfoods by pet owners appearance
- Descriptive analysis of elderberry juice
- Descriptive analysis of bread

Other tests

Thank you! koushik7@uga.edu

