

Peanut-Related Food Safety Issues

Dr. Francisco Diez-Gonzalez

Director and Professor, Center for Food Safety

Hot Topics on Peanuts
Albany, GA

Center for Food Safety at UGA's Griffin Campus

Peanut's Food Safety Risks

1. Allergies

2. Mycotoxins

3. Salmonella

Peanuts as Allergens

- One of the top 8 food allergens
- Food allergens top reason for food recalls
 - 2016 44 recalls due to undeclared peanuts out of 470
- 3.3 million people suffer peanut or tree nut allergies
- 0.6 to 1.5% of children suffer peanut allergy

Peanuts as Allergens

- Allergy incidence is lower in Asia
- Symptoms: mild to severe (including lifethreatening anaphylactic shock)
- Affect skin, GI tract, respiratory tract
- Occur within minutes or few hours after ingestion

Peanut Allergy Origins

Center for Food Safety

College of Agricultural & Environmental Sciences
UNIVERSITY OF GEORGIA

Copied from Platts-Mills et al. 2015

Peanuts as Allergens

- Early oral exposure to peanuts reduces peanut allergy
- 18 allergenic peanut proteins
- Resistant to digestion, heat denaturation and any type of hydrolysis
- Main types: cupin, conglutin, conarachin, Ara h 1,
 Ara h 2, Ara h 3

Prevention of Undeclared Peanuts

- Based on the 2004 FALCPA
 - GMP's
 - Ingredient labelling
 - Informed consent statements on packaging
- FSMA
 - GMP revisions
 - Formally recognized as hazard HARPC
 - Introduced the concept of cross-contact

Peanut's Food Safety Risks

1. Allergies

2. Mycotoxins

3. Salmonella

Mycotoxins in Peanuts

- Aflatoxins (produced by Aspergillus flavus)
- Became evident in 1960s
 - Turkey X disease (100,000 poults died from peanut meal)
- Major risk in many developing countries
- US tolerance level < 15 ppb

Salmonella

- Salmonella are Gram-negative facultative anaerobic bacteria
- Cause serious gastroenteritis diseases
 - Typhoid fever and non-typhoid infections
- Zoonotic pathogenic bacteria
- Associated with poultry and eggs

Estimates of Burden of Bacterial Foodborne Pathogens in the U. S. A.

Bacteria	Cases	Hospitalizations	Deaths
Salmonella (non-typhoidal)	1,028,000	19,336	378
Clostridium perfringens	966,000	438	26
Campylobacter (jejuni, coli)	845,000	8,463	76
Staphylococcus aureus	241,000	1,064	6
Shigella	131,000	1,456	10
STEC non-O157	113,000	271	0
Yersinia enterocolitica	98,000	533	29
Bacillus cereus	63,400	20	0
E. coli O157:H7 (STEC O157)	63,100	2,138	20
Vibrio parahemolyticus	34,700	100	12
Streptococcus	11,200	1	0
Listeria monocytogenes	1,590	1,455	255
TOTAL	3.6 million	35,796	861
enter for Food Safety		(S	callan et al, 2

Center for Food Safety
College of Agricultural & Environmental Sciences

Incidence of Salmonella Foodborne Outbreaks

Center for Food Safety

College of Agricultural & Environmental Sciences

Salmonella Outbreaks Associated with Peanuts

Year	Serovar implicated	Source	Number of cases	Country	Route of contamination
1994/1995	Agona PT 15	Peanut-flavored savory snack	71	Israel, UK, USA	Unidentified
1996	Mbandaka	Peanut butter	15	Australia	Roasted peanuts
2001	Stanley and Newport	In-shell peanuts	109	Australia, Canada, UK	Imported peanuts
2006	Thompson	Boiled peanuts	100	USA	Peanuts
2006/2007	Tennessee	Peanut butter	715	USA	Unidentified
2008/2009	Typhimurium	Peanut butter	714	USA, Canada	Numerous sources identified
2010	Typhimurium PT170	Peanut/cashew mix	19	Australia	Unidentified
2012	Bredeney	Peanut butter	42	USA	Cross-contamination between raw and finished product

Center for Food Safety

 $College \ of \ Agricultural \ \& \ Environmental \ Sciences$

Notable *Salmonella* outbreaks due to low water activity (a_w) foods

Food	Year	Serovar	Cases
Raw almonds	2004	Enteritidis	29
Peanut butter	2007	Tennessee	425
Dry pet food	2007	Schwarzengrund	62
Puffed rice/wheat cereals	2008	Agona	28
Peanut products/butter	2009	Typhimurium	714
Black and red pepper	2009	Montevideo	272
Turkish pine nuts	2011	Enteritidis	43
Peanut products/butter	2012	Bredeney	42
Chia sprout powder	2014	Newport, Hartford, Oranienburg	31

Center for Food Safety

College of Agricultural & Environmental Sciences
UNIVERSITY OF GEORGIA

Food recalls due to Salmonella detection

2014 2016

Center for Food Safety

 $College \ of \ Agricultural \ \& \ Environmental \ Sciences$

Salmonella in Dry Foods: Origins of this Problem

- > Salmonella is a pervasive organism in nature
- Increased used of dry ingredients
- Salmonella's ability to remain viable at low moisture levels
- Salmonella's unique tolerance to heat at low water activity
- Improved surveillance and detection systems

Salmonella in Peanuts: Research Needs

- Sources of contamination
- Prevalence in low a_w foods
- Long term-survival
- > Thermal resistance
- Use of surrogates
- Methods of inactivation

Center for Food Safety

College of Agricultural & Environmental Sciences
UNIVERSITY OF GEORGIA

Salmonella and Peanuts Research Publications

(Pubmed, 2017)

Center for Food Safety

 $College\ of\ Agricultural\ \&\ Environmental\ Sciences$

Prevalence of Salmonella in Peanuts

- > 2.33% of samples (22/944) tested positive (2008-2010)
 - > 10 different serovars
 - Included 3 regions (SW, SE, Va/NC)
 - Only 3 samples had > 0.03 MPN/g

(Calhoun et al., 2013, J. Food Prot. 76:575)

- 0.67% in 10,162 samples (2009-2011)
 - Included 2 states: Texas (Western) and Georgia (Eastern)
 - Prevalence in 2009 was 1.35%
 - Only 12 out of 68 samples were quantifiable (0.7-1.1 MPN)

(Miksch et al., 2013, J. Food Prot. 76:1668)

Survival of Salmonella in Peanuts

- ➤ In peanut butter (PB), from 5.7 Log CFU/g 1.0 Log CFU/g survived after 5.5 months at 21°C with multiple serovars (Burnett et al., 2000, J. Appl. Microbiol. 89:472)
- Three S. Tennessee strains only survived 2 weeks at 22°C in PB (Miksch et al., 2013, J. Food Prot. 76:1668)
- On peanut kernels, 4 serovars survived 12 months at 22°C (Brar et al., 2015, J. Food Prot. 78:323)

Control of Salmonella in Peanuts

➤ Heating is limited because of increased thermal tolerance, D-values at 90°C of 9 to 13 min in PB

(Ma et al., 2009, J. Food Prot. 72:1596)

- ➤ Roasting of kernels in combination with microwaving reduced 4 Log CFU/g *E. faecium* (Smith et al., 2014, J. Food Sci. 29:1584)
- ➤ High pressure processing (HPP) only reduced 1.7 Log CFU/g (D'Sousa et al., 2014, J. Food Prot. 77:1664)
- Figure 1. Comma-irradiation has been tested with promising results (Ban and Kang, 2014, Intl. J. Food Microbiol. 171:48)

Center for Food Safety

College of Agricultural & Environmental Sciences
UNIVERSITY OF GEORGIA

Specific Research Projects

- Kinetics of thermal inactivation in TOC
- ➤ Internalization of *Salmonella* into peanut plants
- ➤ Identification of GRAS-status bacteria surrogates
- > Salmonella genes involved in desiccation tolerance

Internalization of *Salmonella* into Peanut Plants

Center for Food Safety

 $College \ of \ Agricultural \ \& \ Environmental \ Sciences$

Summary

- Three main risks are associated with peanuts: allergens, aflatoxins and *Salmonella*
- Allergy prevention is a major focus of FSMA
- Salmonella in low a_w foods is a recently recognized risk
- Salmonella prevalence in peanuts is relatively low, but posses a risk

Summary

- Salmonella pervasiveness and survival fitness allow it to remain viable in peanuts
- Increased heat tolerance is an additional challenge
- Needs for validation of roasting processing and development of alternative technologies

Questions? Thanks!!!

Center for Food Safety

 $College\ of\ Agricultural\ \&\ Environmental\ Sciences$